
Differentiation Formulas for Analytic Functions* 

By J. N. Lyness 

Abstract. In a previous paper (Lyness and Moler [11), several closely related 
formulas of use for obtaining a derivative of an analytic function numerically are 
derived. 

Each of these formulas consists of a convergent series, each term being a sum 
of function evaluations in the complex plane. 

In this paper we introduce a simple generalization of the previous methods; 
we investigate the "truncation error" associated with truncating the infinite series. 
Finally we recommend a particular differentiation rule, not given in the previous 
paper. 

1. Introduction. In a previous publication, Lyness and Moler [1], referred to 
here as Paper A, the elementary theory of a complex variable was applied to de- 
rive several closely related methods for carrying out numerical differentiation. The 
basis of these methods is Cauchy's theorem which relates the nth derivative f(n) (0) 

of an analytic function f(z) at z = 0 to the value of a closed integral, the contour 
C enclosing the origin once and remaining within a domain of analyticity of f(z). 
Cauchy's theorem states 

(1.1) an= fa P(o) = i f(z) dz 

where an is a Taylor coefficient 

(1.2) f(z) = ajzj, lzj <R 

and we have denoted by R, the radius of convergence of this expansion. 
Thus in principle one method for evaluating a high derivative consists of 

evaluating the integral on the right-hand side of (1.1) numerically. 
At first sight it might seem that the evaluation in the complex plane of an in- 

tegral whose integrand is highly oscillatory would introduce more difficult prob- 
lems than the one to be solved. However, if we choose for the contour C the circle 

(1.3) Cr Izl = r, r < Rc, 

and make a simple change in variable, we find 

(1.4) = _ f J1 f(re2,r t)e-2,rintdt 

and the problem reduces to finding a Fourier coefficient of a periodic function 

(1.5) g(t) = f(re2Trt) 
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which has continuous derivatives of all orders. As is well known, the trapezoidal 
quadrature rule 

(1.6) R ]g(t) = m E g Km) 

may be used to evaluate integrals of this type numerically and is effective and 
economic. (See for example Lyness [2].) 

We define bm(r) to be the difference between R(ml]f(re21it), and the integral 
f f(re2r")dt to which this rule sum approximates. Thus 

(1.7) bm(r) = R(mlJf(re27rit) - f(O) 

is a quantity which may be calculated at a cost of m + 1 function evaluations. 
The Poisson summation formula, which is in this case the Fourier expansion of 
bm(r), leads to the expansion 

(1.8) bm(r) = rmam + r2ma2m + r3ma3m + , m = 1, 2, 3, ... 

and this set of equations may be solved to give 

(1.9) rnan = ,ulbn(r) + Au2b2n(r) + Au3b3n(r) + . , n = 1, 2, 3, , 

where i is the ith Mobius number (either 1, 0, or - 1). Since an is simply 
f(n)(O)/n!, formula (1.9) expresses an nth derivative in a series each term of which 
is the very simple sum of function evaluations given in (1.7). It is shown in Paper 
A that the sum in (1.9) converges rapidly. Thus the suggested method to evaluate 
f(n) (0) consists in evaluating successively bn(r), b2n(r), -.. , and using (1.9), ter- 
minating the series when it appears to have converged to the required accuracy. 

The method described by (1.9) has one major advantage. This is that small 
errors in function evaluation are not amplified in the calculation but tend to be 
dampened out. The round-off error in the final result is simply what might be ex- 
pected in any typical numerical calculation, and can be estimated with little diffi- 
culty. This feature is discussed in Section 5 of Paper A. 

In this paper, a deeper investigation is made into differentiation methods based 
on Cauchy's theorem. It is shown that there exists a family of simple rules which 
includes rules based on the method described above. The truncation error arising 
from terminating the series such as that in (1.9) is investigated and a simple bound 
is given. It is shown that members of this family have very similar properties in 
terms of the maximum degree of the polynomial which is differentiated exactly. 

Finally, a single member of the family (which is not the member described in 
Paper A) is chosen as being likely to give the most economic results. This choice 
turns out to be almost independent of which of several standard criteria is used. 

2. Generalization of Method of Paper A. A generalization of this method fol- 
lows from the simple observation that the nth derivative of f(z) at z = 0 is a con- 
stant multiple of the (n + p)th derivative of 7(z) = zPf(z) at z = 0. Thus we may 
apply the same formula to evaluate a different derivative of a different function, 
and finally represent the result in terms of the original function and derivative. 

We define 
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(2.1) 7(Z) zPf(z) , p > 0, 

and define quantities u,, and 5U(r) as in (1.1) and (1.7), but with respect to the 
function 7(z) instead of f(z). Thus 

(2.2) bm (r) = R[ Emrl] (j(re2mft)) = 1 

and applying (1.9) to the function 7(z) 
00 

(2.3) re an+p= E /kkb(n+p)k(r) 
k=1 

However, since an+p = an, we may set N = p + n and substituting expression 
(2.2) into (2.3) we find 

(2.4) r an = 00Uk k e, f (r > n. 
k=l Nf q=l 

Expression (1.9) is of this form with N = n but includes a minor modification 
which occurs because 7(O) = 0 if p > 0, but A(O) = f(O) if p = 0. (See (2.5) below.) 

Expansion (2.4), together with (1.9) constitute a set of exact formulas which 
express an in terms of an infinite series, each of whose terms is a sum of function 
evaluations. A numerical rule to determine an is completely specified once r and N, 
the parameters in the expansion, are specified together with Q, the number of terms 
of the infinite expansion, which are retained. In general the rule does not produce 
an exact result for an because of the omitted terms in the expansion. We refer to 
this error as the truncation error 8(N)(r). 

N, Q, r family of rules to calculate an. One such rule is obtained from 

nf 2ri ,e(N-) f/Nk 
(e2riqlNk) f r an = ZA Ilk[- Z e f- raN,nf(O)] 

(2.5) k-1 N q=1 

+8(N)(r), N_> n; Q_ 1, 

by specifying N, Q, and r and setting 8(N)(r) to be zero. The method of Paper A 
specified N = n. 

In the rest of this section we derive properties of this family of rules. We in- 
vestigate first the number of function evaluations required by a rule. This is clearly 
independent of r, the radius of the circle on which function evaluations are made. 
We note also that n occurs on the right-hand side only as a parameter in the weight- 
ing coefficients. Thus the number of function evaluations depends on n only insofar 
as a particular value of n can make a weighting coefficient become zero. Except for 
the coefficient of f(O), the modulus of the weighting coefficients is independent of 
n. Thus the number of function evaluations is almost independent of n. For N > n, 
this number is independent of n. For N = n, one additional function evaluation is 
required. Thus it is convenient to make the following definition. 

Definition. VQ(N) is the number of function evaluations on the circle jzj = r re- 
quired by the rule (2.5). 

This is the same as the total number of function evaluations except in the case 
N = n, when the total number is VQ(N) + 1. In the following discussion we dis- 
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regard this special case. It is easy to verify that it does not affect any of the con- 
clusions here. 

The actual determination of VQ (N) is a problem in Number Theory. It may be 
noted that it is equal to the number of distinct fractions q/Nk where 0 < q/Nk < 1, 
where q is any integer and k is any integer for which A K # 0 and for which 
1 < k ? Q. 

For the purposes of this paper only a simple bound on VQ (N) is required. If 
,LQ # 0, the final term in (2.5), that with k = Q, requires NQ distinct function 
evaluations. Thus 

(2.6) VQ(N) > NQ, /Q 7O . 

This inequality is still valid even if ,UQ = 0, but the proof is rather cumbersome 
and is not given here. Moreover, the equality in (2.6) is valid only in the cases 
Q = 1, 2, 4. For other values of Q the value of vQ(N) exceeds NQ by a comfortable 
margin which increases in general (but not monotonically), with increasing Q. We 
state this inequality as a theorem. 

THEOREM. 

(2.7) (N) = NQ, Q = 1,2,4, 

VQt) > NQ, Q = 3, 5, 6, 7,* 
The rules described in (2.5) give exact results in some cases. This may happen if 
f(z) is a polynomial of degree d. In this case 

d 

(2.8) f(z)= E ajz' 
j=O 

and 

(2.9) aj=0, i > d + 1. 

If we refer to the expansion given by (1.8), we see that 

(2.10) bi(r) = 0, i d + 1 . 

Applying this reasoning to the function f(z) = zpf(z), we find that 

(2.11) a i > p + d + 1, 

and 

(2.12) b(r) =0, p + d + 1. 

So the terms in the expansion (2.4) for which Nk > p + d + 1 are zero. Since 
in the rule the final included term is that for which k = Q, it follows that all the 
nonzero terms are included if N(Q + 1) > p + d + 1. Since p = N - n, we have 
the following theorem. 

THEOREM. The rule (2.5) is exact, i.e. &' W(r) = 0, if f(z) is a polynomial of 
degree d where 

(2.13) d? NQ+n-1. 

This is not necessarily the strongest possible inequality. If /Q+1 = =Q+2 
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=I Q+s = 0 but pQ+s+l < 0, this inequality may be replaced by 

(2.14) d<N(Q+s)+n-1. 

This is strict in the sense that if d does not satisfy this inequality there exists a 
polynomial of degree d for which 8'(NQ) (r) 5 0. 

We complete this section by combining the results of the two previous the- 
orems. We note that 

(N) (N)_ 
(2.15) VQ > N(Q + s). 
Thus if a rule (2.5) differentiates a polynomial of degree d exactly, it follows from 
(2.14) and (2.15) that 

(2.16) V(N) >-d + 1-n. 

However, 

(2.17) Vj(d+l-n) = d + 1 - n 

and so an optimum choice is Q = 1 and N = d + 1 - n. 
THEOREM. The rule (2.5) with Q = 1 and N = d + 1 - n gives an exact result 

for f(n) (0) when f(z) is a polynomial of degree d. This rule requires d + 1 - n func- 
tion evaluations. No other choice of N and Q having this property gives a rule requiring 
fewer function evaluations. 

These results indicate that, in the absence of further information about the 
truncation error, the most economical use of function evaluations may result from 
using only one term of (2.5) and choosing N to be correspondingly large. An in- 
vestigation of the truncation error, whose results are given in Section 4, tends to 
confirm this conclusion. We write down this preferred rule explicitly. Setting Q = 1 
in (2.5), we obtain 

n n (N) 1 E -2lrinqlN/e2lriq/N 

(2.18) N=1 
R[N 1](2 intf (re2rit) 

This is exactly the result obtained by approximating the contour integral in (1.1) 
by a trapezoidal rule using N function evaluations. We refer to this rule as the 
t rapezoidal rule. 

3. The Truncation Error 8(N)(r). In this section we obtain an integral repre- 
sentation for, and a bound on the magnitude of the truncation error. We restrict 
our attention to an analytic function f(z) regular within the circle CRG: IzI RC. 
We define an intermediate circle CR: lZI = R where 

(3.1) O<r<R <R,. 

The case N = n is considered in detail and after carrying out the calculation, the 
technique of Section 2 is used to generalize the results to other values of N. We 
recall that the truncation error is defined by 

Q 
(3.2) &n,Q(r) = r an - Z /Lkbkn(r) 

k=1 
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In the special case Q = 0, there is a well-known integral representation for 
this term, namely Cauchy's theorem (1.1) 

(3.3) 8n O(r) = r an = ci f(z)(-Z ) Z 

also a bound is given by Cauchy's inequality for the nth derivative 

(3.4) 'n, O(r) 2 = Irnanl2 ? I(R) (r/R)2 

where I(r) is defined by 

(3.)r(R JCR I f(z)I2z = I If(Re2rit) i2dt 

In this section we obtain the appropriate generalizations of (3.3) and (3.4). These 
are (3.14) and (3.21) below and differ from (3.3) and (3.4) merely insofar as the 
terms (r/z)n and (r/R)2n are replaced by functions gQ((r/z)n) and GQ((r/R)2n) re- 
spectively, these functions being defined below. Finally the complicated function 
GQ(p) is bounded by a simpler function OQ(p). The results of this section are sum- 
marized in Theorem (3.37). The remainder of this section consists of a proof of this 
theorem. 

We require two elementary results before we proceed. The first is the familiar 
Schwarz's inequality 

(3.6) 1 (F, G) 12 < (F, F) (GI G) 
applied to the closed contour integral round CR. This is 

Schwarz's inequality. 

(3.7)f dz z) 2Z<- 1 f ,Z\12dz 1 Z2dz (37) 22 i | (Z)z = 27ric f z 27ri z 

The second is an elementary property of the Mobius numbers, proved in Polya 
and Szego [4] (problem 69). The set of equations 

m 

(3.8) 
x xm + x2 + x + * * m =1, 2, 3, . . .;|x| < 1 

1-x 

may be inverted to give 
n 2n 3n 

n 
X~ ~ X2 Xn X - 1 i X + 82 3 Xn 1 1 

(3.9) 
1x~ 1 X 

n= 1,2,3, .;jxj < 1. 

This identity is used in Eq. (3.13) and subsequently. 
We now obtain an integral representation for bm(r). Since 

(3.10) rSa I f 
(z) 

r 
)Sdz 

and by (1.8) 

00 

(3.11) bm(r) r8ma.sm 
s=1 



358 J. N. LYNESS 

we find 

bm(r) f(z) ( d) z f 2 f (r/z)m dz 2,7ri R z z -x i R -~(,r/z)m Z 

this interchange of the integration and summation operators being allowed be- 
cause as Ir/zl < 1 on CR, the resulting series is absolutely convergent. We now use 
this integral representation for bm(r) to obtain an integral representation for 8(n) (r) 
by means of 

Q 00 

(3.12) (n) (r) = r an - Z Ikbkn(r) = E ukbkn(r) 
k=1 k==Q+i 

the second expression following from the first through (1.9). 
We define a function gQ(o) 

Q oo 
(3.13) gQ (O) =a EI-kO / (1 _ 'Tk) = 1 EYkTkl (I/ - kk) 

k^=1 k=Q+l 

the second equality being a consequence of identity (3.9) and, substituting (3.11) 
into (3.12), it follows that: 

Integral representation for truncation error. 

(3.14) n,7(rr) c R f(Z 

The first form of gQ(o) is convenient for the calculation of individual expressions. 
For example 

go(o) = 

g I(a) -2/(1 -a) 

(3.15) g2(LT) = -o3/(1 -2) 

g3(U) -g4(o) = -U5/[(1 + o)(1 - 

The result (3.14) with Q = 0 is identical with (3.3). 
We now apply Schwarz's inequality (3.7) to expression (3.14) for the trunca- 

tion error. We find 

(3.16) |?. n) (r) 1 <I I(R) r c g9Q ((rlZ),) 12 
dz 

We show now that the expression in square brackets depends on R and r only in 
the combination r/R. 

We define 

(3.17) GQ(p) = f fgQ(pe 2)I 2dt. 

Since the integrand is a periodic function of t with period 1, it follows that 

(3.18) GQ(P ) - f gQ(Pe 27it) 2dt = | gQ(pne-2)rint)12d 

If we set 
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(3.19) p=r/RR 

we find 

(3.20) G Q(P) = f JgQ((r/z))| ,-dz 

THEOREM. The truncation error %(n) (r) defined in (3.2) satisfies the following 
inequality: 

(3.21) 1,(n) (r) I2 < E(n)Q (r, R) = I (R)GQ ( (r/R)n) 

where 1(R) is given by (3.5) and GQ(p) by (3.17). 
It is possible to evaluate GQ(p) directly by substituting expression (3.13) for 

gQ(o-) into (3.20). This may be expanded to give 

(3.22) G ) = JR {(i) (?Z) - r/ 1 (r/z)k EI ( (r/ 

+ Z _1 (1 - (r/z)s)(1 - (r/z)w)} Z 

On the contour lzl = R we may replace z by R2/z. Thus each of the (Q + 1)2 in- 
dependent integrals in (3.22) may be written as the integral of an analytic function, 
having known poles within the contour CR, and each may be evaluated separately 
using the calculus of residues. For example 

- if 
~~~(r/z)s"(rl/2)w dz _ ____ 

H,W (P) -= Z 2h 

(3.23) 27ri R (1 - (r/z);)(1 - (r/l)w) )Z 1 p 

R > r; w, s 1, 
where 

h = lowest common multiple of s and w. 

The terms in the summations over k in (3.22) are zero, with the exception of the 
k = 1 terms. Consequently we are led to an expression for GQ(p) as a rational 
algebraic function, namely 

Q Q 
(3.24) GQ(P) = -pp2 + E ,s iH8,w(p), Q ? 1. 

s=l w=1 

The first few of these expressions are: 

Go(p) = p2, 
(3.25) Gl(p) = p4/(l - p2) 

G2(P) = p6/(l p4) 

G3(p) = G4(p) - pl0/[(l - p2)(1 + p6)] 

It is elementary, but tedious, to calculate more of these. For our purposes a 
bound GQ(p) which we calculate below is sufficiently accurate and is easier to use. 
This bound is derived as follows. The modulus of gQ(QQ) may be bounded by re- 
placing each term in the summation 
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00 

(3.26) 9Q (QY) = E IkcT/ (1 _ -k) 
k=Q+l 

by its modulus and replacing Ak by 1. Thus 

00 

(3.27) gQ (pe )I ? t j Pkl i- p ke |2rikt 
k=Q+l 

We use this in expression (3.17) for GQ(p). Applying Minkowski's inequality we 
find 

G( (Gp) ? f(p 1 - 2 l) dt 

- a k ' 1- ~27rik tdtj 

(3.28) Ok=Q+l 1 p e 

< [ E dt} 

Since 

d t _ __ _ _ __ _ _1 

(3.29) 1 k -2rik 2 1 2k 

we find 

oo k 2 

(3.30) GQ (p) < ( p < GQ (p) 

where 

2(Q+1) 

(3.31) TQ (p) = 
(1 - P)2(1 _ P2(Q+1)) 

As a direct consequence of (3.30) and Theorem (3.21) we find 
COROLLARY. 

(3.32) 1,(n) (r)12 < E(n) (r, R) < n,Q (r, R) = I(R) GQ(P ) 

where p = r/R and GQ(p) is given by (3.31). 
Up to this point in this section we have treated the truncation error &(gv)(r) 

only in the special case N = n. We now generalize the principle results to the gen- 
eral case N ? n following the technique of Section 2. We recall that the rule (2.5) 
in the case N = n + p is derived by applying the rule with N = n to the function 

(3.33) 7(z) = zPf (z) . 

Consequently the truncation error in the calculation of rn+Pan+p using a rule with 
N = n + p is the same as the truncation error in the calculation of rnan using 
this rule, except for a multiplicative factor of rP, the same value of Q being used 
in either calculation. This gives 

(3.34) &(,V(r) = r g&-(r) 

the bar indicating, as usual, that the function f(z) is replaced by f(z). Substitu- 
tion of (3.14) into (3.34) yields 

Integral representation for truncation error. 
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(3.35) (I Q(r) = 2i (z/r) Nf(z)gQ((z/r) N) 
dz 

The inequalities of Theorem (3.21) and Corollary (3.32) are easy to generalize 
as the function f(z) occurs in I(R) and 

(3.36) I(R) = R2PI(R) 

Thus we find 
THEOREM. 

(3 37) 18n,(Q) (r) 12 < En(NQ)(r R n) Q <Ef(r ,R) 

where 

(3.38) E n(fQ(r, R) = I(R)GQ(pN)/p2(N-n) 

and 

(3.39) fnNQ)(r, R) = I(R)&Q(pN)/p2(N-n) 

Here p = r/R and GQ and GQ are given by (3.24) and (3.31) respectively. 
An important case, that with Q = 1, is 

(3.40) 18 12 (r) 12 < En2)(r, R) = I(R)p2(NY+n)/(1 
_ 

P2N) 

4. Choice of N and Q for a Rule Based on E. The final theorem of the last 
section enables us to make an optimum choice of N and Q based on the bound 
'R (N) (r, R) and the number of function evaluations v(lf). We find from (3.39) that 

(4.1) EN Q(r, R) 2QN 1 pN }2 1 -2N'(Q'+1) 

'(r, R) 2QPN 
1 p2N(Q+l) 

This may be used to compare the choice N, Q with the choice N', Q'. Remember- 
ing that p < 1, elementary inequalities applied to (4.1) give: 

THEOREM. If Q'N' > QN and N' > N, then 

(4.2) P n(VQ) (r, R)> E- n fQ)(N ,R 

the equality being valid only in the case N = N', Q = Q'. 
In particular we may set N' = NQ and Q' = 1 to find 
COROLLARY. 

(4.3) iPZQ(r R) > 
R(NQ)(r, R) Q#1 

We recall from Section 2 that VQ (N), the number of function evaluations, satisfies 

(4.4) vQ(IV) > NQ= V 1(NQ) 

Thus we may compare the rule specified by N = N', Q = Q', with the rule speci- 
fied by N = N'Q', Q = 1. The second of these has a smaller error bound 
k(N (r, R) than the first and involves either the same number of, or fewer, function 
evaluations. We state this result as a theorem and a corollary. 

THEOREM. If n, r and R are specified, and N and Q may take all values for which 
VQ (N) < V (where v > n) then 
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(4.5) min PR3Q(r, R) = gn(P7) (r, R). 
N,Q 

In terms of the rules (2.5) this may be written 
COROLLARY. Given n, r and R, the rule specified by N = v and Q = 1 gives a 

smaller error bound EkNv(r, R) than any other rule of set (2.5) requiring v or fewer 
function evaluations. 

5. Conclusion. In this paper we have considered a particular family of rules for 
differentiation which arises naturally from Cauchy's theorem. This family is a gen- 
eralization of the rules previously considered in Paper A. We have derived a trun- 
cation error bound and have compared different members of this family of rules 
using two specific criteria. These are both standard in Numerical Analysis; one re- 
lates the degree of the polynomials differentiated exactly to the number of function 
evaluations required. The other compares a bound on the truncation error to this 
number. 

Both these criteria indicate that the "best" rule is the one which uses the 
simplest discretization of the contour integral. We have referred to this rule as the 
trapezoidal rule, and it is given explicitly by (2.5) with Q = 1, 

n~ fn)(0) nra nra (N) 1 ~27rinq/Nf(27riQ/N) 
N 

r ! = n =ran =N- EC f(r ), N > n. 
This rule is not the one considered in Paper A. 

In a sequel [3] the author considers the implementation of this rule, in particu- 
lar the specification of parameters r and N. It appears that this rule is more con- 
venient than other members of the family for the additional reason that it is the 
easiest to implement in the form of an algorithm. In the sequel the round-off error 
is discussed, and is shown to be the same character for any rule of the family. In 
the author's opinion this is the most important practical feature of this method of 
differentiation. 
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